

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	RESTArt 0.1.3 documentation

RESTArt

Welcome to RESTArt’s documentation. I recommend that you get started with Installation and then head over to the Quickstart.

User’s Guide

This section covers most things you need to know to build REST APIs with RESTArt.

	Installation
	Release Version

	Development Version

	Quickstart
	A Minimal API

	Resources

	Routing

	Serving
	Development

	Deployment

	Configuration
	Options

	Customization

	Middleware
	Write a middleware class

	Use a middleware class

	Testing
	The test client

	The request factory

	Framework Integration
	Why to integrate with other frameworks?

	How to integrate with other frameworks?

	Framework Adapters

	Best Practices
	Project structure

	Thanks

API Reference

If you are looking for information on a specific function, class or method, this section is for you.

	API
	RESTArt Object

	Resource Object

	Request Objects

	Response Objects

	Negotiator Object

	Parser Objects

	Renderer Objects

	Adapter Objects

	Service Object

	Utilities

Additional Notes

Design notes and changelog are here for the interested.

	RESTArt Changelog
	Version 0.1.3

	Version 0.1.2

	Version 0.1.0

	Version 0.0.8

	Version 0.0.5

	Version 0.0.2

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Installation

Release Version

Install RESTArt with pip:

$ pip install Python-RESTArt

Development Version

Install development version from GitHub:

$ git clone https://github.com/RussellLuo/restart.git
$ cd restart
$ python setup.py install

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Quickstart

Eager to get started? This page gives you a good introduction to RESTArt.

It assumes you already have RESTArt installed. If you do not, head over to the Installation section.

A Minimal API

A minimal RESTArt API looks something like this:

from restart.api import RESTArt
from restart.resource import Resource

api = RESTArt()

@api.route(methods=['GET'])
class Greeting(Resource):
 name = 'greeting'

 def read(self, request):
 return {'hello': 'world'}

Just save it as helloworld.py and run it with restart command:

$ restart helloworld:api

Then you can consume the API now:

$ curl http://127.0.0.1:5000/greeting
{"hello": "world"}

So what does the above code do?

	First we import two classes RESTArt and Resource for later use.

	Next we create an instance of the RESTArt class, which represents the whole RESTArt API.

	We then use the route() decorator to register the Greeting class which only cares HTTP verb GET.

	The Greeting class is defined as a resource by subclassing the Resource class. It has a read() method which is a handler for HTTP verb GET.

Resources

In the world of REST APIs, resource is the first-class citizen. That is to say, when you are implementing a REST API, resources are your building blocks.

There are two types of resources: plural resources and singular resources.

Plural Resources

Most resources are conceptually equivalent to a collection. These resources are called Plural Resources.

As a commonly-accepted practice, you should always use plurals in URIs for pluaral resources. Let’s take the classical Todo application as an example. If we implement Todo as a resource, there will be two basic URIs for it:

/todos
/todos/123

And the frequently-used HTTP verbs (or methods) are:

GET /todos
POST /todos
GET /todos/123
PUT /todos/123
PATCH /todos/123
DELETE /todos/123

Singular Resources

Sometimes, there are resources that have no collection concept, then we can treat them as Singular Resources.

The Greeting resource is just an example of singular resources. There are only one URI for it:

/greeting

Although we only care HTTP verb GET then, the possible and frequently-used HTTP verbs are as follows:

GET /greeting
PUT /greeting
PATCH /greeting
DELETE /greeting

Note the lack of a greeting ID and usage of POST verb.

Routing

With the above concepts and conventions in mind, RESTArt provides three methods to route a resource: register(), route() and add_rule().

register()

The register() decorator is provided as a convenient helper specially for plural resources.

Take the Todo resource as an example, we may define and register it with the register() decorator like this:

@api.register
class Todo(Resource):
 name = 'todos'

 # define methods here

See here [https://github.com/RussellLuo/restart/tree/master/examples/todo/todo.py] for the full code of the Todo resource.

Now six different routes are created:

	HTTP Verb
	Path
	Resource:Action
	Used for

	GET
	/todos
	Todo:index()
	display a list of all todos

	POST
	/todos
	Todo:create()
	create a new todo

	GET
	/todos/<pk>
	Todo:read()
	display a specific todo

	PUT
	/todos/<pk>
	Todo:replace()
	replace a specific todo

	PATCH
	/todos/<pk>
	Todo:update()
	update a specific todo

	DELETE
	/todos/<pk>
	Todo:delete()
	delete a specific todo

Note

You can also register a plural resource by using route() instead of register(), although it is more complicated.

For example, the following registration is equivalent to the above one:

@api.route(uri='/todos', endpoint='todos_list',
 methods=['GET', 'POST'], actions={'GET': 'index'})
@api.route(uri='/todos/<pk>', endpoint='todos_item',
 methods=['GET', 'PUT', 'PATCH', 'DELETE'])
class Todo(Resource):
 name = 'todos'

 # define methods here

route()

The route() decorator is provided mainly for singular resources, but you can also use it for plural resources to customize more details.

For example, if we want to provide a global and single configuration object, we can create it as a singular resource like this:

@api.route(methods=['GET', 'PUT', 'PATCH', 'DELETE'])
class Configuration(Resource):
 name = 'configuration'

 # define methods here

Now four different routes are created:

	HTTP Verb
	Path
	Resource:Action
	Used for

	GET
	/configuration
	Configuration:read()
	display the configuration

	PUT
	/configuration
	Configuration:replace()
	replace the configuration

	PATCH
	/configuration
	Configuration:update()
	update the configuration

	DELETE
	/configuration
	Configuration:delete()
	delete the configuration

add_rule()

The add_rule() method is the fundamental method both for register() and route(). If you do not like the decorator style, and you want to customize more behaviors, you should use it.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Serving

This section shows you how to run your APIs in RESTArt.

As a concrete example, consider the following Greeting API:

helloworld.py

from restart.api import RESTArt
from restart.resource import Resource

api = RESTArt()

@api.route(methods=['GET'])
class Greeting(Resource):
 name = 'greeting'

 def read(self, request):
 return {'hello': 'world'}

Development

The Pythonic Way

As a Pythonista, chances are you like to run the API just as a normal Python script. That’s good!

The Pythonic way you want is supported by RESTArt, at the cost of a little wrapper code with the help of the Service class:

runserver.py

from restart.serving import Service
from helloworld import api

service = Service(api)

if __name__ == '__main__':
 service.run()

Now, you can run the API like this:

$ python runserver.py

The Command Line Utility

To make the serving step as simple as possible, RESTArt also provides a command line utility called restart. You may have seen it in Quickstart. Yes! It’s born for serving, and you will not be disappointed to use it:

$ restart helloworld:api

That’s all. Isn’t it amazing?

restart has only one argument:

	Argument
	Example
	Description

	entrypoint
	helloworld:api
	A string in the form module_path:api
where api is the central RESTArt API
object and module_path is the path to
the module where api is defined.

For the options supported by reatart, see the help messages:

$ restart --help

Deployment

RESTArt’s primary deployment platform is WSGI [http://www.wsgi.org/], the Python standard for web servers and applications.

To make RESTArt APIs easy to deploy, it’s recommended to create a file named wsgi.py as follows:

wsgi.py

from restart.serving import Service
from helloworld import api

application = Service(api)

Then use awesome WSGI servers to communicate with the application callable.

Gunicorn

Gunicorn [http://gunicorn.org/] (‘Green Unicorn’) is a pure-Python WSGI server for UNIX. It has no dependencies and is easy to install and use.

	Install Gunicorn:

$ pip install gunicorn

	Use Gunicorn:

$ gunicorn wsgi -b 127.0.0.1:5000

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Configuration

This section covers all configuration options for you to customize the behavior of RESTArt APIs.

Options

Server

	Option name
	Default value
	Description

	SERVER_NAME
	‘’
	The server name (scheme + domain + port)

Action mapping

	Option name
	Default value
	Description

	ACTION_MAP
	{‘HEAD’: ‘head’, ‘TRACE’: ‘trace’, ‘GET’: ‘read’, ‘PUT’: ‘replace’, ‘POST’: ‘create’, ‘DELETE’: ‘delete’, ‘OPTIONS’: ‘options’, ‘PATCH’: ‘update’}
	The mapping from request methods
to resource actions, which is used
to find the specified action to
handle the request.

Parsers and Renderers

	Option name
	Default value
	Description

	PARSER_CLASSES
	(‘restart.parsers.JSONParser’, ‘restart.parsers.URLEncodedParser’, ‘restart.parsers.MultiPartParser’)
	The default Parser classes.

	RENDERER_CLASSES
	(‘restart.renderers.JSONRenderer’,)
	The default Renderer classes.

Logger

	Option name
	Default value
	Description

	LOGGER_ENABLED
	True
	Enable or disable the global logger.

	LOGGER_METHODS
	(‘GET’, ‘POST’, ‘PUT’, ‘PATCH’, ‘DELETE’)
	A sequence of HTTP methods whose
messages should be logged.

	LOGGER_LEVEL
	‘INFO’
	The logging level.

	LOGGER_FORMAT
	‘%(asctime)s.%(msecs)03d %(name)-10s %(levelname)-8s %(message)s’
	The logging format for strings.

	LOGGER_DATE_FORMAT
	‘%Y-%m-%d %H:%M:%S’
	The logging format for date/time.

Middlewares

	Option name
	Default value
	Description

	MIDDLEWARE_CLASSES
	()
	The middleware classes used to alter
RESTArt’s requests and responses.

Customization

You can customize all of the above configuraion options by following the steps below:

	Create a Python module to set your preferred values:

$ vi restart_config.py

LOGGER_METHODS = ['POST', 'PUT', 'PATCH']
LOGGER_LEVEL = 'DEBUG'

	Set the environment variable RESTART_CONFIG_MODULE to the Python path of the above module:

$ export RESTART_CONFIG_MODULE=pythonpath.to.restart_config

That’s all. Then, while your API is running, messages with DEBUG (or higher) level will be logged for any request whose HTTP method is POST, PUT or PATCH.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Middleware

Middleware is a framework of hooks into RESTArt’s request/response processing. It’s a light, low-level “plugin” system for globally altering RESTArt’s input or output.

In RESTArt, any Python class that has a process_request() method or a process_response() method can be used as a middleware. See perform_action for more information about middleware behaviors.

Write a middleware class

Suppose you already have an API, and now you want to only allow the authenticated users to access it. To add this limit, you can write a simple middleware class (based on HTTP Basic authentication [https://en.wikipedia.org/wiki/Basic_access_authentication]) like this:

my_middlewares.py

from restart.exceptions import Unauthorized

class AuthMiddleware(object):
 """The middleware used for authentication."""

 def process_request(self, request):
 """Authenticate the request.

 :param request: the request object.
 """
 username = request.auth.get('username')
 password = request.auth.get('password')
 if not (username == 'YOUR_USERNAME' and password == 'YOUR_PASSWORD'):
 raise Unauthorized()

For a real-world middleware implementation, see RESTArt-CrossDomain [https://github.com/RussellLuo/restart-crossdomain] for an example.

Use a middleware class

RESTArt supports middlewares in two styles:

	Global middlewares

	Resource-level middlewares

The processing order of the two styles of middlewares is as follows:

	During request phase, the process_request() methods of global middlewares are called before those of resource-level middlewares.

	During response phase, the process_response() methods of resource-level middlewares are called before those of global middlewares.

Global middlewares

To use a middleware class as a global middleware, just add it to the MIDDLEWARE_CLASSES tuple in your RESTArt configuration module.

In the MIDDLEWARE_CLASSES tuple, each middleware is represented by a string: the full Python path to the middleware’s class name. For example, here’s how to enable the above AuthMiddleware middleware class:

MIDDLEWARE_CLASSES = (
 'my_middlewares.AuthMiddleware',
)

Resource-level middlewares

To use a middleware class as a resource-level middleware, just add it to the middleware_classes tuple as the class attribute of your resource class.

In the middleware_classess tuple, each middleware is represented by a class. For example, here’s how to enable the above AuthMiddleware middleware class:

from restart.api import RESTArt
from restart.resource import Resource

from my_middlewares import AuthMiddleware

api = RESTArt()

@api.route(methods=['GET'])
class Demo(Resource):
 name = 'demo'

 middleware_classes = (AuthMiddleware,)

 def read(self, request):
 return 'this is a demo'

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Testing

RESTArt provides a small set of tools that come in handy when writing tests.

The test client

The test client is a Python class that acts as a dummy Web client, allowing you to test your resources and interact with your RESTArt-powered APIs programmatically.

	
class restart.testing.Client(api)

	The class used as a test client.

Example:

client = Client(api)
GET /examples
response = client.get('/examples')
POST /examples
response = client.post('/examples', data='{"name": "test"}',
 content_type='application/json')

	Parameters:	api – the RESTArt API object.

The request factory

The RequestFactory provides a way to generate a request instance that can be used as the first argument to any resource. This means you can test a resource very easy.

	
class restart.testing.RequestFactory(keep_initial_request=False)

	The class used to generate request objects.

Example:

factory = RequestFactory()
GET /examples
request = factory.get('/examples')
POST /examples
request = factory.post('/examples', data='{"name": "test"}',
 content_type='application/json')

	Parameters:	keep_initial_request – a boolean value. If set to True, the
request object generated by the factory
will be the initial request object, which
is framework-specific. If not specified,
defaults to False, then the final adapted
request object will be generated.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Framework Integration

RESTArt looks like a micro-framework. Like many frameworks, RESTArt handles requests and responses in its own way, and you can build REST APIs based on RESTArt without the help of any other framework.

Actually, RESTArt is designed as a library, which is framework-agnostic. It’s the underlying library Werkzeug [http://werkzeug.pocoo.org] that gives RESTArt the ability to serve APIs independently. Strictly speaking, RESTArt consists of the framework-agnostic core library and the framework-specific Werkzeug integration.

Why to integrate with other frameworks?

With the built-in Werkzeug integration, RESTArt works well for serving standalone APIs. You may ask why we need to integrate RESTArt with other frameworks? The following are the reasons I can think of:

	You are working with an existing or legacy application, which uses a specific framework

	Your API must be based on a useful library or an awesome extension, but it is framework-specific

	The integration with a specific framework can improve the performance of your API (e.g. RESTArt-Falcon [https://github.com/RussellLuo/restart-falcon])

How to integrate with other frameworks?

In RESTArt, framework integration is made easy by using adapters. For a real-world example, see the source code [https://github.com/RussellLuo/restart/blob/master/restart/adapter.py#L68] of WerkzeugAdapter, which is the adapter for the built-in Werkzeug integration.

As another example, We can write an adapter for integrating RESTArt into Flask [http://flask.pocoo.org]. Since both RESTArt and Flask [http://flask.pocoo.org] are based on Werkzeug [http://werkzeug.pocoo.org], it’s an easy job:

from six import iteritems
from restart.adapter import Adapter, WerkzeugAdapter
from flask import Flask, request

class FlaskAdapter(Adapter):

 def __init__(self, *args, **kwargs):
 super(FlaskAdapter, self).__init__(*args, **kwargs)
 self.werkzeug_adapter = WerkzeugAdapter(*args, **kwargs)
 self.app = Flask(__name__)
 # Add Flask-specific URI routes
 for rule in self.get_embedded_rules():
 self.app.add_url_rule(**rule)

 def adapt_handler(self, handler, *args, **kwargs):
 """Adapt the request object and the response object for
 the `handler` function.

 :param handler: the handler function to be adapted.
 :param args: a list of positional arguments that will be passed
 to the handler.
 :param kwargs: a dictionary of keyword arguments that will be passed
 to the handler.
 """
 return self.werkzeug_adapter.adapt_handler(handler, request,
 *args, **kwargs)

 def wsgi_app(self, environ, start_response):
 """The actual Flask-specific WSGI application.

 See :meth:`~restart.serving.Service.wsgi_app` for the
 meanings of the parameters.
 """
 return self.app(environ, start_response)

 def get_embedded_rules(self):
 """Get the Flask-specific rules used to be embedded into
 an existing or legacy application.

 Usage:

 # The existing Flask application
 from flask import Flask
 app = Flask()
 ...

 # The RESTArt API
 from restart.api import RESTArt
 api = RESTArt()
 ...

 # Embed RESTArt into Flask
 from restart.serving import Service
 from restart.ext.flask.adapter import FlaskAdapter
 service = Service(api, FlaskAdapter)
 for rule in service.embedded_rules:
 app.add_url_rule(**rule)
 """
 rules = [
 dict(rule=rule.uri, endpoint=endpoint,
 view_func=rule.handler, methods=rule.methods)
 for endpoint, rule in iteritems(self.adapted_rules)
]
 return rules

Framework Adapters

As a summary, the following list gives the adapters for some frameworks:

	Framework
	Adapter
	Support Type

	Werkzeug [http://werkzeug.pocoo.org]
	WerkzeugAdapter [https://github.com/RussellLuo/restart/blob/master/restart/adapter.py#L68]
	Built-in class

	Flask [http://flask.pocoo.org]
	FlaskAdapter
	Extension class

	Falcon [https://github.com/falconry/falcon]
	RESTArt-Falcon [https://github.com/RussellLuo/restart-falcon]
	Extension library

Feel free to contribute adapters for other frameworks.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Best Practices

Some best practices for using RESTArt are recommendated here.

Project structure

There are many different ways to organize your RESTArt API, but here I will describe one that scales well with larger applications and maintains a nice level organization.

Here’s an example directory structure:

blog/
 blog/
 __init__.py
 api.py # contains the central API object
 wsgi.py # contains the WSGI application
 resources/
 __init__.py
 posts/ # contains logic for /posts
 __init__.py
 resource.py
 tags/ # contains logic for /tags
 __init__.py
 resource.py
 tests/ # optional, contains the test code

See examples/blog [https://github.com/RussellLuo/restart/tree/master/examples/blog] for details.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

Thanks

RESTArt is not an innovative product created from scratch. It is based on Werkzeug [http://werkzeug.pocoo.org],
and is inspired by many other awesome libraries and frameworks.

RESTArt has learned from:

	Flask [http://flask.pocoo.org]

How to use Werkzeug [http://werkzeug.pocoo.org] properly, how to elegantly support extensions and Testing, and
how to write documentations based on Sphinx [http://sphinx-doc.org].

	Django REST framework [http://www.django-rest-framework.org]

How to support Parsers and Renderers.

	RestExpress [https://github.com/RestExpress/RestExpress]

How to map HTTP methods to resource actions, which is the inspiration of Action mapping.

	Nameko [https://github.com/onefinestay/nameko]

The convenience of providing a helper command-line utility restart (like the nameko utility),
and the simplicity and consistency of class-based REST resources (like the class-based nameko services).

	Django [https://www.djangoproject.com]

How to support Middlewares.

	Flask-API [http://www.flaskapi.org]

The last paragraph of the Roadmap [http://www.flaskapi.org/#roadmap] gives me the original inspiration to
create framework-agnostic REST libraries, such as Resource [https://github.com/RussellLuo/resource] and RESTArt.

	Resource [https://github.com/RussellLuo/resource]

Its experimental work about REST, which is valuable for RESTArt. The
MongoDB-related part also becomes the predecessor of RESTArt-Mongo [https://github.com/RussellLuo/restart-mongo].

	Flask-RESTful [http://flask-restful.readthedocs.org]

The good style of its documentations.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RESTArt 0.1.3 documentation

API

This section covers all the interfaces of RESTArt.

RESTArt Object

	
class restart.api.RESTArt

	The class that represents the RESTArt API and acts as the
central object.

	
add_rule(resource_class, uri, endpoint, methods=None, actions=None)

	Register a resource for the given URI rule.

	Parameters:	
	resource_class – the resource class.

	uri – the URI registered. Werkzeug-style converters are
supported here. See Rule Format [http://werkzeug.pocoo.org/docs/0.10/routing/#rule-format] for
more information.

	endpoint – the endpoint for the URI.

	methods – a sequence of allowed HTTP methods. If not
specified, all methods are allowed.

	actions – a dictionary with the specific action mapping pairs
used to update the default ACTION_MAP. If not
specified, the default ACTION_MAP will be used.
See Configuration for more information.

	
add_rule_with_format_suffix(resource_class, uri, endpoint, methods=None, actions=None, format_suffix='disabled')

	Register a resource for the given URI rule with a possible
format suffix.

	Parameters:	format_suffix – a string indicating whether or how to support
content negotiation via format suffixes on
URIs. If specified, its value must be
‘disabled’ (not supported),
‘optional’ (supported and optional) or
‘mandatory’ (supported and mandatory).
If not specified, defaults to ‘disabled’.

See add_rule() for the meanings of other parameters.

	
register(cls=None, prefix=None, pk='<pk>', list_actions=None, item_actions=None, format_suffix='disabled')

	A special decorator that is used to register a plural resource.
See Routing for more information.

Important note:

Unlike the route() and add_rule() methods,
‘OPTIONS’ is always allowed implicitly in register()
to handle potential CORS. In order to achieve the same purpose,
you must add ‘OPTIONS’ into the methods parameter explicitly
when using the route() and add_rule() methods.

	Parameters:	
	cls – the class that will be decorated.

	prefix – the URI prefix for the resource. If not specified,
the resource name
with a leading slash will be used. For example, the
prefix will be ‘/todos’ if the resource name
is ‘todos’.

	pk – the primary key name used to identify a specific
resource. Werkzeug-style converters are supported here.
See Rule Format [http://werkzeug.pocoo.org/docs/0.10/routing/#rule-format] for more information.

	list_actions – the action mapping pairs for the list-part
URI (the URI without the primary key, see
Plural Resources for more information).
If not specified, the default ACTION_MAP
will be used. See Configuration for
more information.

	item_actions – the action mapping pairs for the item-part
URI (the URI with the primary key, see
Plural Resources for more information).
If not specified, the default ACTION_MAP
will be used. See Configuration for
more information.

	format_suffix – see add_rule_with_format_suffix().

	
route(cls=None, uri=None, endpoint=None, methods=None, actions=None, format_suffix='disabled')

	A decorator that is used to register a resource for a given
URI rule. See Routing for more information.

	Parameters:	
	cls – the class that will be decorated.

	uri – the URI registered. Werkzeug-style converters are
supported here. See Rule Format [http://werkzeug.pocoo.org/docs/0.10/routing/#rule-format] for more
information. If not specified, the resource
name with a leading
slash will be used. For example, the uri will be
‘/todos’ if the resource name is ‘todos’.

	endpoint – the endpoint for the URI. If not specified, the
resource name
will be used.

	methods – a sequence of allowed HTTP methods. If not
specified, all methods are allowed.

	actions – a dictionary with the specific action mapping pairs
used to update the default ACTION_MAP. If not
specified, the default ACTION_MAP will be used.
See Configuration for more information.

	format_suffix – see add_rule_with_format_suffix().

	
rules

	A dictionary of all registered rules, which is a mapping from
URI endpoints to URI rules. See Rule for
more information about URI rules.

	
class restart.api.Rule(uri, methods, handler)

	A simple class that holds a URI rule.

	Parameters:	
	uri – the URI.

	methods – the allowed HTTP methods for the URI.

	handler – the handler for the URI.

Resource Object

	
class restart.resource.Resource(action_map)

	The core class that represents a REST resource.

	Parameters:	action_map – the mapping of request methods to resource actions.

	
dispatch_request(request, *args, **kwargs)

	Does the request dispatching. Matches the HTTP method and return
the return value of the bound action.

	Parameters:	
	request – the request object.

	args – the positional arguments captured from the URI.

	kwargs – the keyword arguments captured from the URI.

	
find_action(request)

	Find the appropriate action according to the request method.

	Parameters:	request – the request object.

	
get_parser_context(request, args, kwargs)

	Return a dictionary that represents a parser context.

	Parameters:	
	request – the request object.

	args – the positional arguments captured from the URI.

	kwargs – the keyword arguments captured from the URI.

	
get_renderer_context(request, args, kwargs, response)

	Return a dictionary that represents a renderer context.

	Parameters:	
	request – the request object.

	args – the positional arguments captured from the URI.

	kwargs – the keyword arguments captured from the URI.

	response – the response object.

	
handle_exception(exc)

	Handle any exception that occurs, by returning an appropriate
response, or re-raising the error.

	Parameters:	exc – the exception to be handled.

	
http_method_not_allowed(request, *args, **kwargs)

	The default action handler if the corresponding action for
request.method is not implemented.

See dispatch_request() for the meanings of the parameters.

	
log_exception(exc)

	Logs an exception with ERROR level.

	Parameters:	exc – the exception to be logged.

	
log_message(msg)

	Logs a message with DEBUG level.

	Parameters:	msg – the message to be logged.

	
logger

	A logging.Logger object for this API.

	
make_response(rv)

	Converts the return value to a real response object that is
an instance of Response.

The following types are allowed for rv:

	Response
	the object is returned unchanged

	str
	the string becomes the response body

	unicode
	the unicode string becomes the response body

	tuple
	A tuple in the form (data, status)
or (data, status, headers) where
data is the response body, status is
an integer and headers is a dictionary
with header values.

	
negotiator_class

	alias of Negotiator

	
perform_action(*args, **kwargs)

	Perform the appropriate action. Also apply all possible process_*
methods of middleware instances in self.middlewares.

During request phase:

process_request() methods are called on each request,
before RESTArt calls the action, in order.

It should return None or any other value that
make_response can recognize.
If it returns None, RESTArt will continue processing
the request, executing any other process_request() and,
then, the action. If it returns any other value (e.g.
a Response object), RESTArt won’t
bother calling any other middleware or the action.

During response phase:

process_response() methods are called on all responses
before they’are returned to the client, in reverse order.

It must return a value that can be converted to a
Response object by
make_response. It could alter
and return the given response, or it could create and return
a brand-new value.

Unlike process_request() methods, the
process_response() method is always called, even if the
process_request() of the same middleware were skipped
(because an earlier middleware method returned a
Response).

	Parameters:	
	args – a list of positional arguments that will be passed
to the action.

	kwargs – a dictionary of keyword arguments that will be passed
to the action.

Request Objects

	
class restart.request.Request(initial_request)

	The base request class used in RESTArt.

	Parameters:	initial_request – the initial request, which is framework-specific.

	
get_args()

	Get the request URI parameters.

	
get_auth()

	Get the request authorization data.

	
get_environ()

	Get the request WSGI environment.

	
get_headers()

	Get the request headers.

	
get_method()

	Get the request method.

	
get_path()

	Get the request path.

	
get_scheme()

	Get the request scheme.

	
get_stream()

	Get the request stream.

	
get_uri()

	Get the request URI.

	
parse(negotiator, parser_classes, parser_context=None)

	Return a request object with the data parsed, which is a
dictionary. If the request payload is empty, the parsed data
will be an empty dictionary.

	Parameters:	
	negotiator – the negotiator object used to select
the proper parser, which will be used
to parse the request payload.

	parser_classes – the parser classes to select from.
See Parser Objects for
information about parsers.

	parser_context – a dictionary containing extra context
data that can be useful to the parser.

	
class restart.request.WerkzeugRequest(initial_request)

	The Werkzeug-specific request class.

	
get_args()

	Get the request URI parameters from the Werkzeug-specific
request object.

	
get_auth()

	Get the request authorization data from the Werkzeug-specific
request object.

	
get_environ()

	Get the WSGI environment from the Werkzeug-specific
request object.

	
get_headers()

	Get the request headers from the Werkzeug-specific
request object.

	
get_method()

	Get the request method from the Werkzeug-specific
request object.

	
get_path()

	Get the request path from the Werkzeug-specific
request object.

	
get_scheme()

	Get the request scheme from the Werkzeug-specific
request object.

	
get_stream()

	Get the request stream from the Werkzeug-specific
request object.

	
get_uri()

	Get the request URI from the Werkzeug-specific
request object.

Response Objects

	
class restart.response.Response(data, status=200, headers=None)

	The base response class used in RESTArt.

	Parameters:	
	data – the response body.

	status – an integer that represents an HTTP status code.

	headers – a dictionary with HTTP header values.

	
get_specific_response()

	Get the framework-specific response.

	
render(negotiator, renderer_classes, format_suffix, renderer_context=None)

	Return a response object with the data rendered.

	Parameters:	
	negotiator – the negotiator object used to select
the proper renderer, which will be used
to render the response payload.

	renderer_classes – the renderer classes to select from.
See Renderer Objects for
information about renderers.

	format_suffix – the format suffix of the request uri.

	renderer_context – a dictionary containing extra context
data that can be useful to the renderer.

	
class restart.response.WerkzeugResponse(data, status=200, headers=None)

	The Werkzeug-specific response class.

	
get_specific_response()

	Get the Werkzeug-specific response.

Negotiator Object

	
class restart.negotiator.Negotiator

	The class used to select the proper parser and renderer.

	
select_parser(parser_classes, content_type)

	Select the proper parser class.

	Parameters:	
	parser_classes – the parser classes to select from.

	content_type – the target content type.

	
select_renderer(renderer_classes, format_suffix)

	Select the proper renderer class.

	Note:

	For simplicity, the content-negotiation here is only based
on the format suffix specified in the request uri. The more
standard (and also complex) Accept header is ignored.

	Parameters:	
	renderer_classes – the renderer classes to select from.

	format_suffix – the format suffix of the request uri.

Parser Objects

	
class restart.parsers.Parser

	The base parser class.

	
parse(stream, content_type, content_length, context=None)

	Parse the stream.

	Parameters:	
	stream – the stream to be parsed.

	content_type – the content type of the request payload.

	content_length – the content length of the request payload.

	context – a dictionary containing extra context data
that can be useful for parsing.

	
class restart.parsers.JSONParser

	The parser class for JSON data.

	
parse(stream, content_type, content_length, context=None)

	Parse the stream as JSON.

	Parameters:	
	stream – the stream to be parsed.

	content_type – the content type of the request payload.

	content_length – the content length of the request payload.

	context – a dictionary containing extra context data
that can be useful for parsing.

	
class restart.parsers.MultiPartParser

	The parser class for multipart form data, which may
include file data.

	
parse(stream, content_type, content_length, context=None)

	Parse the stream as a multipart encoded form.

	Parameters:	
	stream – the stream to be parsed.

	content_type – the content type of the request payload.

	content_length – the content length of the request payload.

	context – a dictionary containing extra context data
that can be useful for parsing.

	
class restart.parsers.URLEncodedParser

	The parser class for form data.

	
parse(stream, content_type, content_length, context=None)

	Parse the stream as a URL encoded form.

	Parameters:	
	stream – the stream to be parsed.

	content_type – the content type of the request payload.

	content_length – the content length of the request payload.

	context – a dictionary containing extra context data
that can be useful for parsing.

Renderer Objects

	
class restart.renderers.Renderer

	The base renderer class.

	
render(data, context=None)

	Render data.

	Parameters:	
	data – the data to be rendered.

	context – a dictionary containing extra context data
that can be useful for rendering.

	
class restart.renderers.JSONRenderer

	The JSON renderer class.

	
render(data, context=None)

	Render data into JSON.

	Parameters:	
	data – the data to be rendered.

	context – a dictionary containing extra context data
that can be useful for rendering.

Adapter Objects

	
class restart.adapter.Adapter(api)

	The class used to adapt the RESTArt API to a specific framework.

	Parameters:	api – the RESTArt API to adapt.

	
adapt_handler(handler, *args, **kwargs)

	Adapt the request object and the response object for
the handler function.

	Parameters:	
	handler – the handler function to be adapted.

	args – a list of positional arguments that will be passed
to the handler.

	kwargs – a dictionary of keyword arguments that will be passed
to the handler.

	
adapt_rules(rules)

	Adapt the rules to be framework-specific.

	
get_embedded_rules()

	Get the framework-specific rules used to be embedded into
an existing or legacy application.

	
wsgi_app(environ, start_response)

	The actual framework-specific WSGI application.

See wsgi_app() for the
meanings of the parameters.

	
class restart.adapter.WerkzeugAdapter(*args, **kwargs)

	
	
adapt_handler(handler, request, *args, **kwargs)

	Adapt the request object and the response object for
the handler function.

	Parameters:	
	handler – the handler function to be adapted.

	request – the Werkzeug request object.

	args – a list of positional arguments that will be passed
to the handler.

	kwargs – a dictionary of keyword arguments that will be passed
to the handler.

	
get_embedded_rules()

	Get the Werkzeug-specific rules used to be embedded into
an existing or legacy application.

Example:

The existing Werkzeug application,
whose URL map is `app.url_map`
app = ...
...

The RESTArt API
from restart.api import RESTArt
api = RESTArt()
...

Embed RESTArt into Werkzeug
from restart.serving import Service
service = Service(api)
for rule in service.embedded_rules:
 app.url_map.add(rule)

	
wsgi_app(environ, start_response)

	The actual Werkzeug-specific WSGI application.

See wsgi_app() for the
meanings of the parameters.

Service Object

	
class restart.serving.Service(api, adapter_class=<class 'restart.adapter.WerkzeugAdapter'>)

	The service class for serving the RESTArt API.

	Parameters:	
	api – the RESTArt API.

	adapter_class – the class that is used to adapt the api object.
See WerkzeugAdapter
for more information.

	
__call__(environ, start_response)

	Make the Service object itself to be a WSGI application.

	Parameters:	
	environ – a WSGI environment.

	start_response – a callable accepting a status code, a list
of headers and an optional exception context
to start the response

	
embedded_rules

	The framework-specific rules used to be embedded into
an existing or legacy application.

	
rules

	The framework-specific API rules.

	
run(host=None, port=None, debug=None, **options)

	Runs the API on a local development server.

	Parameters:	
	host – the hostname to listen on. Set this to ‘0.0.0.0’ to
have the server available externally as well. Defaults
to ‘127.0.0.1’.

	port – the port of the webserver. Defaults to 5000.

	debug – if given, enable or disable debug mode.

	options – the options to be forwarded to the underlying Werkzeug
server. See werkzeug.serving.run_simple()
for more information.

	
wsgi_app(environ, start_response)

	The actual WSGI application.

	Parameters:	
	environ – a WSGI environment.

	start_response – a callable accepting a status code, a list
of headers and an optional exception context
to start the response

Utilities

	
class restart.utils.locked_cached_property(method=None, name=None)

	A decorator that converts a method into a lazy property.

The method wrapped is called the first time to retrieve the result
and then that calculated result is used the next time you access
the value.

This decorator has a lock for thread safety.

Inspired by Flask.

	Parameters:	
	method – the method that will be decorated.

	name – the name of the cached property, which holds the
calculated result. If not specified, the <method-name>
(the name of the decorated method) will be used.

	
class restart.utils.classproperty(fget, *args, **kwargs)

	A decorator that converts a method into a read-only class property.

	Note:

	You ought not to set the value of classproperty-decorated attributes!
The result of the behavior is undefined.

	
class restart.utils.locked_cached_classproperty(method=None, name=None)

	The lazy version of classproperty, which converts a method into
a lazy class property.

	Parameters:	
	method – the method that will be decorated.

	name – the name of the cached class property, which holds the
calculated result. If not specified, the name with the
form of _locked_cached_classproperty_<method-name>
will be used.

	
restart.utils.load_resources(module_names)

	Import all modules in module_names to load resources.

Example usage:

load_resources(['yourapi.resources.users.resource'])
load_resources(['yourapi.resources.orders.resource'])

the equivalent of the above two lines
load_resources(['yourapi.resources.*.resource'])

	
restart.utils.expand_wildcards(module_name)

	Expand the wildcards in module_name based on sys.path.

Suppose the directory structure of “yourapi” is as below:

yourapi
|-- __init__.py
`-- resources
 |-- users
 | |-- __init__.py
 | `-- resource.py
 `-- orders
 |-- __init__.py
 `-- resource.py

Then:

expand_wildcards('yourapi.resources.*.resource')
=>
['yourapi.resources.users.resource',
 'yourapi.resources.orders.resource']

	
restart.utils.make_location_header(request, pk)

	Make the Location header for the newly-created resource.

	Parameters:	
	request – the POST request object.

	pk – the primary key of the resource.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	RESTArt 0.1.3 documentation

RESTArt Changelog

Here you can see the full list of changes between each RESTArt release.

Version 0.1.3

Released on Feb 21st 2016.

	Always render HTTPException messages into JSON

	Move CORSMiddleware out of RESTArt (use the RESTArt-CrossDomain [https://github.com/RussellLuo/restart-crossdomain] extension for CORS instead)

	Remove tests for CORSMiddleware

	Remove the configuration options for CORS

	Update documentation

	Upgrade the Python-EasyConfig dependency

Version 0.1.2

Released on Dec 30th 2015.

	Refactor the Adapter module for better usage

	Add -a, --adapter argument to the restart utility

	Select the first renderer class if no format suffix is specified

	Add context keyword argument to Parser.parse()
and Renderer.render()

	Use _locked_cached_classproperty_<method-name> (instead of <method-name>)
as the default name of the cached class property, which holds the calculated result for the
locked_cached_classproperty
decorated class property

	Implement the get_embedded_rules
method of WerkzeugAdapter

	Update documentation

	Update examples

Version 0.1.0

Released on Oct 3rd 2015.

	Add support for resource-level middleware classes

	Bind a mutable attribute (whose name starts with an underscore) to each request property

	Fix bugs for importing extensions

	Refactor the logic for parsing request data or files

	Refactor the logic for rendering response data

	Add the SERVER_NAME configuration option

	Add support for registering URIs with format suffixes

	Add changelog

	Add support for Python 2/3 compatibility

	Re-raise unhandled exceptions with their tracebacks

	Add http_method_not_allowed as the default action

	Get multiple query arguments from the request correctly

Version 0.0.8

Released on Jul 19th 2015.

	Update documentation

	Add makefile

	Add support for extension development

	Add the Adapter classes to handle framework adaptions

	Add testing tools

	Add support for Middleware

	Add support for CORS

Version 0.0.5

Released on Jun 26th 2015.

	Add RESTArt and Service

	Refactor Request and Response

	Add Parser and Renderer

	Handle exceptions

	Add documentation

	Add more tests

	Add logging

Version 0.0.2

Released on May 17th 2015.

The first release.

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	RESTArt 0.1.3 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 restart	

 	
 	
 restart.adapter	

 	
 	
 restart.api	

 	
 	
 restart.config.default	

 	
 	
 restart.negotiator	

 	
 	
 restart.parsers	

 	
 	
 restart.renderers	

 	
 	
 restart.request	

 	
 	
 restart.resource	

 	
 	
 restart.response	

 	
 	
 restart.serving	

 	
 	
 restart.testing	

 	
 	
 restart.utils	

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	RESTArt 0.1.3 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | W

_

 	

 	__call__() (restart.serving.Service method)

A

 	

 	adapt_handler() (restart.adapter.Adapter method)

 	

 	(restart.adapter.WerkzeugAdapter method)

 	adapt_rules() (restart.adapter.Adapter method)

 	Adapter (class in restart.adapter)

 	

 	add_rule() (restart.api.RESTArt method)

 	add_rule_with_format_suffix() (restart.api.RESTArt method)

C

 	

 	classproperty (class in restart.utils)

 	

 	Client (class in restart.testing)

D

 	

 	dispatch_request() (restart.resource.Resource method)

E

 	

 	embedded_rules (restart.serving.Service attribute)

 	

 	expand_wildcards() (in module restart.utils)

F

 	

 	find_action() (restart.resource.Resource method)

G

 	

 	get_args() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_auth() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_embedded_rules() (restart.adapter.Adapter method)

 	

 	(restart.adapter.WerkzeugAdapter method)

 	get_environ() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_headers() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_method() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_parser_context() (restart.resource.Resource method)

 	

 	get_path() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_renderer_context() (restart.resource.Resource method)

 	get_scheme() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_specific_response() (restart.response.Response method)

 	

 	(restart.response.WerkzeugResponse method)

 	get_stream() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

 	get_uri() (restart.request.Request method)

 	

 	(restart.request.WerkzeugRequest method)

H

 	

 	handle_exception() (restart.resource.Resource method)

 	

 	http_method_not_allowed() (restart.resource.Resource method)

J

 	

 	JSONParser (class in restart.parsers)

 	

 	JSONRenderer (class in restart.renderers)

L

 	

 	load_resources() (in module restart.utils)

 	locked_cached_classproperty (class in restart.utils)

 	locked_cached_property (class in restart.utils)

 	

 	log_exception() (restart.resource.Resource method)

 	log_message() (restart.resource.Resource method)

 	logger (restart.resource.Resource attribute)

M

 	

 	make_location_header() (in module restart.utils)

 	make_response() (restart.resource.Resource method)

 	

 	MultiPartParser (class in restart.parsers)

N

 	

 	Negotiator (class in restart.negotiator)

 	

 	negotiator_class (restart.resource.Resource attribute)

P

 	

 	parse() (restart.parsers.JSONParser method)

 	

 	(restart.parsers.MultiPartParser method)

 	(restart.parsers.Parser method)

 	(restart.parsers.URLEncodedParser method)

 	(restart.request.Request method)

 	Parser (class in restart.parsers)

 	

 	perform_action() (restart.resource.Resource method)

R

 	

 	register() (restart.api.RESTArt method)

 	render() (restart.renderers.JSONRenderer method)

 	

 	(restart.renderers.Renderer method)

 	(restart.response.Response method)

 	Renderer (class in restart.renderers)

 	Request (class in restart.request)

 	RequestFactory (class in restart.testing)

 	Resource (class in restart.resource)

 	Response (class in restart.response)

 	RESTArt (class in restart.api)

 	restart.adapter (module)

 	restart.api (module)

 	restart.config.default (module)

 	restart.negotiator (module)

 	

 	restart.parsers (module)

 	restart.renderers (module)

 	restart.request (module)

 	restart.resource (module)

 	restart.response (module)

 	restart.serving (module)

 	restart.testing (module)

 	restart.utils (module)

 	route() (restart.api.RESTArt method)

 	Rule (class in restart.api)

 	rules (restart.api.RESTArt attribute)

 	

 	(restart.serving.Service attribute)

 	run() (restart.serving.Service method)

S

 	

 	select_parser() (restart.negotiator.Negotiator method)

 	select_renderer() (restart.negotiator.Negotiator method)

 	

 	Service (class in restart.serving)

U

 	

 	URLEncodedParser (class in restart.parsers)

W

 	

 	WerkzeugAdapter (class in restart.adapter)

 	WerkzeugRequest (class in restart.request)

 	

 	WerkzeugResponse (class in restart.response)

 	wsgi_app() (restart.adapter.Adapter method)

 	

 	(restart.adapter.WerkzeugAdapter method)

 	(restart.serving.Service method)

 Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		RESTArt 0.1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, RussellLuo.
 Created using Sphinx 1.3.4.

_static/comment.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

